Na fase inicial do projeto será implantada uma infraestrutura de aproximadamente 711 km de cabos de fibras ópticas subaquáticos, onde as distâncias entre os pontos de conexão estão representadas na **Tabela 1 – Distâncias dos Trechos – Fase00**. Considerando as distâncias dos trechos, a capacidade total de comprimentos de onda utilizados pelo sistema óptico DWDM deverá ser igual ou superior a 40 lambdas de 100 Gb/s por direção sem qualquer tipo de repetição subaquática, de modo haja regeneração de sinal somente nos pontos de presença terrestres.

Tabela 1 - Distâncias dos Trechos - Fase 00

Trechos	Unid.	Valor Min
Macapá-Almeirim		293
Almeirim-Monte Alegre	Km	186
Monte Alegre-Santarém	KIII	127
Santarém-Alenquer		105

As fibras ópticas adquiridas nos cabos ópticos subaquáticos e terrestres seguem as caraterísticas mencionadas nas recomendações G.652.D do ITU-T. Para o dimensionamento da solução do sistema óptico DWDM, devem ser consideradas as faixas de valores de parâmetros mais significativos para a qualidade da transmissão de dados, que estão expressas na **Tabela 2** – **Características das fibras ópticas**.

Tabela 2 – Características das fibras ópticas

Fibra Óptica: Monomodo				
Referências: Recomendações do ITU-T G.652.D e ITU-T G.654.D				
Características	Unid.	Valor Min	Valor Típico	Valor Max
Faixa de operação	Nm	1530	1550	1565
Atenuação @ 1550nm, G.652.D	dB/km	-	-	0,19
Atenuação @ 1550nm, G.654.D	dB/km	-	-	0,17
Dispersão cromática @ 1285-1330nm	ps/(nm.km)	-	-	4
Dispersão cromática @ 1550nm	ps/(nm.km)	-	-	18
Dispersão pelo modo de polarização, PMD	ps/√km	-	-	0,2

Detalhamos a seguir a especificação técnica do sistema óptico DWDM:

1 Objeto

- 1.1 Esta especificação contempla os requisitos mínimos que serão exigidos pela RNP para fornecimento de um sistema óptico DWDM de longa distância. Caso algum dos itens com informações solicitadas nesta ADC a CANDIDATA não possua disponibilidade comercial imediata, este deverá indicar se e quando será disponibilizada (ROADMAP) que poderão, a critério da RNP, ser consideradas ou não no processo.
- 1.2 As informações solicitadas são baseadas em especificações técnicas internacionais para equipamentos com esta tecnologia, bem como exigências internas da RNP.
- 1.3 A CANDIDATA deverá responder às especificações com as características técnicas garantidas dos equipamentos que compõem o sistema DWDM. Esta avaliação deverá ser respondida integralmente. A avaliação técnica será feita a partir dos dados fornecidos pela resposta ponto a ponto.
- 1.4 Deverão ser informados o modelo e versão dos equipamentos que serão ofertados, bem como o plano de evolução de futuras funcionalidades (ROADMAP), com as respectivas datas onde estas funcionalidades estarão disponíveis, num horizonte de 12 (doze) meses.
- O sistema óptico deve ser projetado para suportar canais expressos (sem regeneração elétrica) entre os trechos, incluindo a rota entre Macapá-AP e Almerim-PA, considerando as distancias e atenuações informadas na topologia do anexo II.
 - 1.5.1 Informar na proposta quantos canais expressos (sem regeneração) são suportados entre Macapá-AP e Almerim-PA.
 - 1.5.2 Caso não tenha viabilidade técnica para canais expressos entre Macapá-AP e Almerim-PA, informar na proposta o motivo da inviabilidade.
- Os equipamentos que compõem o sistema DWDM, objeto deste documento, destinamse a operação na banda C.
- 1.7 O sistema deverá operar em spans de 1 (um) par de fibras ópticas do tipo Standard G.652.D, sendo uma fibra destinada para transmissão e outra para recepção.
- 1.8 Os equipamentos ofertados que compõem o sistema deverão operar tanto com espaçamento entre comprimentos de onda de 50 GHz, conforme especificado na recomendação G.694-1 do ITU-T, como com espaçamento flexível entre canais DWDM com granularidade de 12,5 GHz, podendo ser combinada em N x 12,5 GHz para largura espectral de flexgrid.

- 1.9 O sistema DWDM a 100Gb/s deverá funcionar totalmente livre de compensadores de dispersão cromática e não serão aceitos transponders/muxponder que não usem detecção coerente.
- 1.10 Os transponder/muxponder com tecnologia passível de aumentar a capacidade de banda do canal óptico, de 100Gb/s para 200Gb/s, no mesmo hardware, será um diferencial na proposta da CANDIDATA.
- 1.11 O sistema deverá suportar muxponders com 10 portas clientes de 10Gb/s que deverão aceitar multitaxas transparente.
- 1.12 A CANDIDATA deverá possuir em seu portfólio transponders e muxponders, configuráveis via gerência, suportados pelos equipamentos ofertados, com as seguintes características:
 - 1.12.1 Com taxa de linha e/ou cliente superior a 100Gb/sutilizando tecnologia de uma ou múltiplas portadoras ópticas.
 - 1.12.2 Os transponders e muxponders ofertados que compõem o sistema DWDM deverão suportar a estrutura de multiplexação de frame óptico OTU e ODU completa, segundo a sua capacidade.
- 1.13 Os equipamentos deverão estar de acordo com a estrutura de mapeamento prevista na recomendação G.709 do ITU-T
- 1.14 O sistema DWDM deverá vir equipado de maneira a permitir a ampliação a passos de 1 transponder, até atingir a capacidade mínima de 20 canais, sem a necessidade de adquirir hardware ou licenças de software (de equipamento ou de gerência) adicionais, com exceção dos transponders.
- 1.15 O Sistema DWDM deve seguir o conceito *Zero Touch*, onde o sistema DWDM é dimensionado, implementado e operado de forma simplificada, através de ferramentas de planejamento e desenho de rede integrada com sistema de gerencia. Os equipamentos deverão ser capazes de auto alinhamento com base na informação gerada pela ferramenta de planejamento. O sistema DWDM ofertado deverá possuir equalização automática de canais, de maneira que a adição e retiradas de canais ópticos, assim como a manutenção do sistema, seja simplificada e ágil e sem a necessidade de utilização de equipamentos ou instrumentos externos de medição, equalização, etc.

- 1.15.1 O sistema DWDM também deverá permitir a equalização dos canais manualmente, via software de gerência
- 1.16 Os equipamentos deverão permitir a sua instalação em qualquer bastidor de 600 mm que atenda a ETS 300-119 do ETSI.
- 1.17 O sistema deve permitir o uso de transponders de outros fornecedores (lambda alien) em todos os canais.
 - 1.17.1 Todo e qualquer custo de licença de software para suporte a lambda alien devem estar contemplados na proposta.
 - 1.17.2 O lambda alien deve ter uma perfeita operação. Entende-se por perfeita operação, mas não se limitando, a comunicação com qualidade satisfatória de banda, latência e jitter.
 - 1.17.3 O sistema deve suportar a equalização automática dos canais, sejam eles nativos ou alien.
 - 1.17.4 O sistema deve suportar o aprovisionamento automático de canais alien, da mesma forma que é suportado em canais nativos, com exceção da configuração do próprio transponder.
- 1.18 A CANDIDATA deverá informar:
 - 1.18.1 Largura do canal DWDM.
 - 1.18.2 Tipo de modulação utilizada
 - 1.18.3 A linha de módulos de transponders e muxponders multi-taxas transparente que possuem em portfólio para a família do equipamento informado.
 - 1.18.4 O alcance máximo em um único enlace sobre fibra G.652.D utilizando todos os recursos de amplificação óptica disponíveis.

2 Características de Desempenho

2.1 Os transponders e muxponders ofertados que compõem o sistema DWDM deverão obrigatoriamente ser sintonizáveis em qualquer um dos comprimentos de onda da grade do ITU-T com espaçamento de até 100 GHz para a banda C.

- 2.2 A troca de frequência deverá ser realizada através de comando de software, via sistema de gerência.
- 2.3 A solução deve permitir a regeneração óptico-elétrica-óptica (EOE) dos canais ópticos em taxas OTU4 ou superior.
- 2.4 Informar os tipos de sub-bastidores disponíveis e o número máximo de transponders que podem ser equipados em cada tipo de sub-bastidor, informando, detalhadamente, a capacidade máxima para um bastidor de 2200mm de altura e o número de bastidores necessários para o sistema completo com os 40 canais ativos.
 - 2.4.1 Esta capacidade não deverá ser inferior a 10 muxponders de 10x10G em um bastidor de 2200mm de altura.
 - 2.4.2 Esta capacidade não deverá ser inferior a 10 transponders de 100G em um bastidor de 2200mm de altura.
- 2.5 Os transponders e muxponders deverão ter suas transmissões livres de erro:
 - 2.5.1 Informar o valor de DGD médio suportado, OSNR e o Q-factor
- 2.6 O transponder de 100G e muxponder de 10 x 10G devem ser configuráveis em HD FEC ou SD FEC.
- 2.7 Os transponders 100Gb/s ofertados devem contemplar, no mínimo, os seguintes tipos interfaces de cliente:
 - 2.7.1 Interface OTU-4: Os equipamentos deverão dispor obrigatoriamente das interfaces de acordo com a Recomendação G.709 do ITU em módulo óptico removível LR4.
 - 2.7.2 Interfaces Gigabit Ethernet: deverá disponibilizar interface óptica segundo as características definidas na especificação IEEE 802.3 e IEEE 802.3ae, empregando mapeamento GFP sobre estrutura G.709.
- 2.8 Suportar encriptação em nível físico para canais de 100G.
 - 2.8.1 A CANDIDATA deverá informar qual o protocolo de encriptação na especificação AES256 ou superior.

3 Características do ROADM

- 3.1 Todos os nós da rede com necessidade de inserção/extração de tráfego deverão ser configurados como ROADM, utilizando um módulo WSS (Wavelength Switch Selector) por direção e permitindo o uso de 40 canais.
- 3.2 Todos os nós da rede deverão estar dotados da funcionalidade OSA (Optical Spectrum Analyzer) por direção, de maneira que seja possível, através do sistema de gerência,

- monitorar os níveis de potência individuais de cada canal óptico, nativos ou *alien*, OSNR e verificar o processo de equalização automática do sistema.
- 3.3 Todo o processo de add-drop deverá ser puramente óptico, isto é, deverá prescindir de uma conversão óptico-elétrico-óptico e sem necessidade de intervenção manual.
- 3.4 Os sistemas ROADM baseados em tecnologia WSS deverão, obrigatoriamente, possuir as funcionalidades *colorless* e *directionless* em pelo menos 10 canais inicialmente, podendo ser ampliado.
- 3.5 Todos os componentes do sistema DWDM ofertados, exceto os transponders, deverão estar prontos para utilização de *flexqrid* e modulação flexível, tanto *hardware* como *software*.
- 3.6 Os sistemas baseados em tecnologia WSS deverão dispor de recursos de controle dinâmico de potência e de atenuação variável (VOA) de modo a permitir ajustar o nível de potência óptica de cada canal individualmente. Também deverá permitir a realização dos ajustes através de sistema gerência. Não serão aceitos ajuste de potência através de uso de atenuadores fixos externos ou internos.
- 3.7 Os sistemas baseados em tecnologia WSS deverão disponibilizar medidas ópticas por canal óptico e a potência composta em todas as portas, visíveis no Sistema de Gerência.
- 3.8 Os módulos ROADM devem permitir a inserção/extração mínima de 10 canais da rede em todos os nós previstos com terminais add/drop, podendo ser ampliado.
- 3.9 Os módulos ROADM devem permitir a escalabilidade de evolução do nó de grau 2 até no mínimo grau 4.
- 3.10 O grau do DWDM não deve ser utilizado para conectar diretamente o transponder ou muxponder, portanto, não deve ser contabilizado para capacidade mínima de 40 canais do sistema.

4 Amplificadores Ópticos

- 4.1 Para fins de dimensionamento e fornecimento das soluções de amplificação, considerar o uso de equipamentos apenas nas estações da Tabela 1, são elas Macapá, Almeirim, Monte Alegre, Santarém e Alenquer.
- 4.2 A solução de amplificação ofertada pela CANDIDATA deverá ser dimensionada para o uso de, no mínimo, 40 canais por span, com margem de sistema igual ou superior a 3dB em final de vida útil.
 - 4.2.1 Os amplificadores ópticos deverão, obrigatoriamente, ser gerenciados pelo Sistema de Gerência de elemento de rede do ROADM.

4.2.2 Informar se os módulos amplificadores ópticos a serem fornecidos (RAMAN, Booster, Preamp ou amplificador de linha) são exclusivos para a função amplificação ou possuem funções adicionais integradas (WSS, OSA, OTDR, etc).

5 Controle Automático de Potência.

5.1 Os equipamentos propostos deverão possuir controle automático do nível de potência, permitindo que o OSNR dos canais existentes não se altere com a introdução de novos canais. O ajuste dos níveis de potência deverá ser automático e por canal óptico. Desta forma, os canais adicionados deverão ter o mesmo nível de potência óptica dos demais, mantendo o sistema equalizado de forma que todos os canais tenham o mesmo OSNR.

6 Canal de Supervisão Óptico

- 6.1 O canal de supervisão óptico deverá operar fora da banda.
- 6.2 Os amplificadores ópticos da rede bem como todos módulos da solução deverão suportar ser gerenciados remotamente pelo canal de supervisão óptico (in-band) e elétrico através de interface Ethernet (out-of-band).
- 6.3 No canal de supervisão trafegará todas as informações relativas ao gerenciamento dos amplificadores, dos canais auxiliares de dados e EOW (Engineering Order Wire).
- 6.4 O canal de supervisão deverá ser independente do status de operação dos amplificadores ópticos que estiver monitorando, ou seja, não devem passar pelos amplificadores.
- 6.5 Caso o subsistema de gerência ou do canal de supervisão falhar o sistema DWDM deverá permanecer em operação e os elementos de rede adjacentes, à falha, deverão emitir sinais indicativos de alarme referente à perda do canal de supervisão óptica.
- 6.6 O sistema deve contar com módulo OTDR integrado ao sub-bastidor principal, para monitoramento das fibras de transmissão e recepção de cada span, utilizando um canal adicional.
 - 6.6.1 Todo o comando de medida e configuração dos pulsos de teste deve ser realizado via software de gerência do sistema principal.
 - 6.6.2 Os módulos instalados deverão permitir o monitoramento de todos os spans.
 - 6.6.3 Os dados coletados deverão ser exibidos de forma gráfica pelo sistema de gerência e armazenado numa base de dados.
- 6.7 Os equipamentos devem suportar redundância de gateway para comunicação com o sistema de gerência.

7 Alimentação e Consumo

- 7.1 Os equipamentos propostos deverão possuir modelos de fontes redundantes de alimentação CC (Corrente Contínua). Cada fonte deverá ter capacidade de alimentar o equipamento isoladamente.
 - 7.1.1 Para o PoP de Macapá-AP o equipamento deverá possuir fonte AC (Corrente Alternada) ou deverá fornecido retificador modular com redundância N+1 adequado a solução a ser instalado no mesmo rack do equipamento DWDM.
- 7.2 Cada fonte de alimentação deverá ter entrada independente da outra, e protegida contra inversão de polaridade.
- 7.3 Em caso de falha de qualquer alimentador serão geradas alarmes para o sistema de gerência e as indicações ("alarme geral de bastidor", "alarme urgente do equipamento") e as extensões de alarme ("alarme urgente de bastidor" e "alarme urgente de equipamento").
- 7.4 Deverá ser entregue um *bayface*, para cada uma das estações objeto desta ADC, contendo no mínimo os seguintes dados:
 - 7.4.1 Tensão de Alimentação nominal e margens para mais ou para menos;
 - 7.4.2 Consumo do bastidor, por sub-bastidor e total para configuração inicial e com 40 transponders por direção;
 - 7.4.3 Número de disjuntores necessários no CIF/QDCC, por sub-bastidor e total;
 - 7.4.4 Dissipação térmica prevista por bastidor;
 - 7.4.5 Localização do conector de aterramento;
 - 7.4.6 Diâmetro máximo e mínimo do cabo/conector de aterramento.

8 Condições Ambientais

- 8.1 Os equipamentos deverão funcionar corretamente nas condições climáticas e ambientais especificadas para locais com controle de temperatura (climatizados), conforme ETS 300-019, Parte 1-3. Classe 3.1 (5º C<temperatura <40º C) sem sofrer degradação das suas características.
- 8.2 Os equipamentos deverão dispor de meios de dissipação de calor que lhes permitam funcionar corretamente dentro das margens de temperatura indicadas.
- 8.3 Caso o equipamento se utilize de ventilação forçada, as unidades de ventilação deverão ser duplicadas. Cada unidade de ventilação deverá possuir capacidade para atender a necessidade de ventilação independente das outras, e sua velocidade deverá ser controlada

para que opere em regime de giro reduzido quando não existem unidades de ventilação com falha e aumentando a velocidade para suprir a perda de capacidade de ventilação quando alguma unidade deixe de operar. Todas as informações deste item deverão ser reportadas e controladas via gerência.

8.4 O equipamento permanece em operação em caso de perda de todos os módulos de ventilação forçada e indicar o tempo máximo de operação segura nestas condições.

9 Confiabilidade

- 9.1 A vida útil dos equipamentos especificados neste documento deverá ser maior ou igual a 15 (quinze) anos. Assim, todos eles deverão respeitar as exigências descritas na presente especificação durante toda sua vida útil e garantir o reparo e reposição dos módulos originais do projeto durante este período.
- 9.2 A CANDIDATA deverá emitir um termo de garantia que fará parte do contrato comprometendo-se a manter os equipamentos ofertados nesta RFP, ou similares que mantenham, no mínimo, as mesmas funções e compatibilidade com os sub-bastidores deste objeto, em linha de produção e em desenvolvimento por um período mínimo de 10 anos.
- 9.3 Desmembrar os equipamentos nos diferentes cartões e unidades que o compõe, informando:
 - 9.3.1 Tempo médio entre falhas (MTBF), em anos;
 - 9.3.2 O tempo médio para reparo (MTTR) da CONTRATADA, em dias, estando incluídos o tempo de reparo em si e o tempo de coleta/devolução dos módulos.

10 Segurança

10.1 Todos os dispositivos laser, e em especial a saída dos amplificadores ópticos de potência, deverão permitir ao operador, localmente ou através do sistema de gerência, habilitar e desabilitar a função (ALS - Automatic Laser Shut-down) que deverá atuar sempre que o dispositivo, ou amplificador, fique desconectado de sua carga normal. As características de atuação desta proteção deverão estar de acordo com as normas ETSI e ITU.

11 Assistência Técnica e Suporte

- 11.1 Deverão ser ofertados serviços de assistência técnica e suporte nas opções de 12 meses e 24 meses, sendo a proposta de 12 meses a que será considerada para comparativo entre as proponentes, e possuir as seguintes características:
- 11.2 Serviço de Manutenção de Dispositivos de Rede

- 11.2.1 Os pedidos de assistência e suporte técnicos deverão ser abertos exclusivamente junto ao Centro de Assistência Técnica (TAC) da CONTRATADA, que é o responsável pela resolução dos problemas e eventuais solicitações de reposição de materiais defeituosos (RMA). Os chamados serão abertos pela RNP ou PARCEIRA no Centro de Assistência Técnica (TAC) via portal, telefone gratuito (0800) ou e-mail e deverá ter associado um número de rastreabilidade (protocolo).
- 11.3 A CONTRATADA terá um prazo de 24 (vinte e quatro) horas para solucionar ou contornar problemas da solução de gerência ou firmware de equipamentos que impliquem em perda de serviço.
- 11.4 A CONTRATADA terá um prazo de 72 (setenta e duas) horas para solucionar ou contornar problemas da solução de gerência ou firmware de equipamentos que impliquem em perda de confiabilidade, bem como impossibilite a configuração remota do sistema.
- 11.5 A CONTRATADA terá um prazo de 90 (noventa) dias para prover a solução definitiva para os problemas que não tenham impacto operacional, ou seja, não impossibilitem o uso das funcionalidades citadas nos itens anterior.
- 11.6 O acesso ao serviço de assistência técnica (TAC) deverá ser disponibilizado durante vinte e quatro horas por dia, sete dias por semana (24x7), em português.
- 11.7 Serviço de Reposição de Peças
 - 11.7.1 Este serviço compreende o envio de materiais sobressalentes por parte da CONTRATADA às dependências da RNP ou PARCEIRA em substituição a equipamento, componente, acessório ou dispositivo defeituoso coberto por este contrato de serviços e conforme comprovação do Centro de Assistência Técnica (TAC) no atendimento ao chamado originário.
 - 11.7.2 Após aberta a solicitação de substituição de peças (RMA) pelo Centro de Assistência Técnica (TAC), inicia-se o prazo de fornecimento das peças substitutas conforme especificado para cada classe de equipamentos, ambos os prazos contados a partir do acionamento da solicitação de substituição (RMA) pela equipe técnica do TAC da CONTRATADA para o equipamento atendido.
 - 11.7.3 Será aplicada à CONTRATADA penalidade pelo descumprimento dos prazos definidos e acordados no contrato de serviços de manutenção.
 - 11.7.4 As despesas relativas a eventuais deslocamentos dos equipamentos que se fizerem necessárias para a correção de problemas técnicos, correrão por conta da CONTRATADA e sob sua exclusiva responsabilidade até um dos centros de distribuição indicados pela contratante, a serem acordados e definidos no contrato de serviços de manutenção.

- 11.7.5 Deverão ser considerados os seguintes Centros de Distribuições: Macapá-AP e Santarém SP.
- 11.7.6 As peças, partes ou componentes fornecidos como complemento ou substituição do(s) equipamento(s) cobertos pelos serviços deverão ser novos, e, passará(ão) a ser, automaticamente, de propriedade da RNP e cobertos pelo contrato de manutenção. As peças, partes ou componentes deverão possuir funcionalidades/capacidades iguais ou superiores aos substituídos.
- 11.7.7 O transporte, do centro de distribuição até o ponto de substituição e instalação das peças, partes ou componentes, será de responsabilidade da RNP ou PARCEIRA que manterá sobressalentes em seu centro de distribuição, portanto o RMA será dedicado a repor os sobressalentes utilizados.
- 11.7.8 A falta de equipamentos/componentes/peças não poderá ser alegada como motivo de força maior e não eximirá a CONTRATADA das penalidades a que está sujeita pelo não cumprimento dos prazos estabelecidos no Acordo de Nível de Serviço.
- 11.7.9 O contrato de manutenção será do tipo 30 dias calendários, ou seja, a partir da abertura do chamado e disponibilização do item em um dos centros de distribuições, a CONTRATADA terá até o prazo contratual para a coleta e devolução do item consertado ou um novo substituto. As penalidades serão proporcionais ao atraso da devolução em relação ao custo anual do contrato de manutenção.

11.8 Serviço de Atualização de software e firmware

- 11.8.1 Este serviço compreende o acesso remoto por parte da RNP ou por sua ordem, às atualizações de software e firmware e correções de bugs disponíveis no site do fabricante para os dispositivos, equipamentos, módulos, ferramenta de planejamento e sistema de gerência adquiridos.
- 11.8.2 A execução deste serviço dar-se-á por acesso seguro com o código de acesso individual da RNP ou PARCEIRAS ao site da CONTRATADA.

11.9 Serviço de Acesso à Documentação Técnica:

- 11.9.1 Este serviço compreende o acesso remoto por parte da RNP ou PARCEIRAS ao acervo de documentações técnicas da CONTRATADA e da base de conhecimentos relacionada aos equipamentos cobertos pelo contrato de serviços.
- 11.9.2 A execução deste serviço dar-se-á por acesso seguro com o código de acesso individual da RNP ou PARCEIRAS ao site doa CONTRATADA.

12 Sistema de Gerência

- 12.1 Características Gerais
- 12.1.1 O Sistema de Gerência é a plataforma responsável pelas funções de OAM do sistema a ser fornecido. Sua função é implementar uma Gerência Integrada dos elementos do sistema sejam eles elementos de rede reais ou virtuais, trilhas, circuitos fim a fim, esquemas de proteção etc.
- 12.1.2 O sistema de gerência ofertado deverá provisionar circuitos fim a fim a partir da seleção de forma gráfica dos nós de origem e destino pelo operador. O sistema deve permitir ao operador que a seleção dos recursos utilizados para este provisionamento seja realizada de forma automática pelo sistema ou customizada pelo operador.
- 12.1.3 Em função de sua importância a verificação de falhas e problemas da rede, o sistema de gerência a ser ofertado deverá ser capaz de monitorar graficamente os nós da rede, através de seus blocos funcionais, de maneira que o operador possa seguir o caminho do sinal óptico em cada ponto do sistema DWDM, ou seja, deverá ser possível enxergar graficamente cada um dos diversos elementos abaixo através de representações de blocos e linhas que os interconectam, apresentando o nível do sinal óptico em cada ponto:
 - ✓ Transponders
 - ✓ Muxponders (de interfaces clientes a 10G e subtaxas)
 - ✓ Amplificadores Ópticos (Booster, Pré-amplificadores, Amplificadores de Linha e RAMAN): Lado IN e OUT Pós-amplificadores
 - ✓ Filtros
 - ✓ WSS
 - ✓ Canal de supervisão óptico
- 12.1.4 O sistema de gerência deve ser compatível e suportar as funcionalidades de FCAPS (Fault, Configuration, Accounting, Performance and Security) conforme a recomendação TMN (M.3400).
- 12.1.5 O software deve ser capaz de controlar e gerenciar todas as funcionalidades presentes em cada tipo de elemento de rede através de uma mesma suíte (mesma console de gerenciamento).
- 12.1.6 O sistema de deverá permitir o acesso simultâneo um mínimo de 10 sessões concorrentes.
- 12.1.7 O sistema de gerência deverá permitir a realização remota de backup e atualização de firmwares para todos os componentes da solução.

- 12.1.8 Deve permitir a visualização da topologia da rede em um único mapa de rede.
- 12.1.9 Deve permitir a visualização gráfica do bayface dos equipamentos, bem como do estado das portas, módulos e fontes, e permitir configuração de parâmetros através dessa visualização.

12.2 Gerência de Falhas

- 12.2.1 O sistema de gerência deverá ser capaz de receber, analisar, armazenar e processar, quando aplicáveis, todos os alarmes gerados pelos seguintes eventos:
 - 12.2.1.1 Perda do sinal em qualquer dos canais de transporte (individualmente para cada canal)
 - 12.2.1.2 Perda do sinal em cada uma das interfaces de tributários e de agregado
 - 12.2.1.3 Falha de cada uma das placas
 - 12.2.1.4 Falha de cada transponder
 - 12.2.1.5 Falha de cada "laser"
 - 12.2.1.6 Falha do canal de supervisão
 - 12.2.1.7 Falha de alimentação
 - 12.2.1.8 Falha de unidade de ventilação
 - 12.2.1.9 Perda de conexão com o sistema de gerência
 - 12.2.1.10 Interrupção do trajeto óptico
 - 12.2.1.11 Indicação de acesso local ao elemento de rede via craft terminal
 - 12.2.1.12 Alteração de limiares para sinalização referentes a relação sinal óptico ruído
 - 12.2.1.13 Taxa de erro no trajeto óptico (limiar configurável)
- 12.2.2 A Gerência de Falhas deverá ser capaz de receber, analisar, armazenar e processar todas as notificações de alarmes geradas pelos elementos de redes e

plataformas contidos no projeto básico de rede e os que vierem a ser adquiridos ou incorporados.

- 12.2.3 Informar o número máximo de elementos que poderão ser gerenciados pelo sistema fornecido, não sendo inferior ao dobro do número de elementos fornecidos na rede inicial.
- 12.2.4 Deve ser encaminhado o status real do alarme do elemento de rede (ativo, inativo, etc).
- 12.2.5 A Gerência de Falhas deverá ter funcionalidade para inibir seletivamente as notificações dos elementos de rede, que por algum motivo não se deseja gerenciar (por exemplo: elemento de rede em manutenção).
 - 12.2.6 O sistema deverá prover mecanismo que permita recuperar as notificações ocorridas durante uma interrupção da rede de comunicação.
 - 12.2.7 Após o retorno de uma interrupção da rede de comunicação deverá ser informado/atualizado o estado dos alarmes dos elementos gerenciados.
 - 12.2.8 O sistema deverá fornecer indicação do status de tratamento do alarme (reconhecimento, enviado para análise, etc.) pelo operador do Sistema de Gerência de Rede.
 - 12.2.9 O sistema de gerência deverá ser capaz de apresentar, sob demanda, a relação de alarmes ativos no momento e histórico de alarmes. Estas listas de alarmes deverão permitir a utilização de qualquer combinação dos filtros a seguir:
 - a) Elemento de rede
 - b) Localidade
 - c) Data/hora
 - d) Status
 - e) Severidade
 - f) Tipo do alarme
 - 12.2.10 Após reparada a falha, deverão ser desativadas as indicações no elemento de rede (LEDs) e o alarme deverá desaparecer da Relação de Alarmes Ativos e aparecer no Histórico de Alarmes.