

Proposta de Projeto – Fase Piloto

Grupo de Trabalho - Segunda Fase

GIIRO – Gerenciador de Informações e Infraestrutura de Redes Ópticas

Rodrigo Rocha Gomes e Souza (UFBA) 13/12/2016

1. Visão geral

1.1. Descrição do produto/serviço resultante do piloto

O GIIRO é um sistema web para o gerenciamento da infraestrutura física de redes ópticas, incluindo o mapeamento geográfico de cabos e equipamentos, caixas de emenda, reservas técnicas e instituições clientes das redes mapeadas. O sistema

permite o cadastro de emendas e das terminações, de forma a permitir o mapeamento fim-a-fim da rede.

A Figura 1 apresenta a tela principal do sistema desenvolvido na fase de protótipo. A maior parte da tela é ocupada por um mapa, que pode ser trocado por uma visualização de satélite. A interface do sistema possui botões para as seguintes funcionalidades:

- 1. busca de endereços;
- 2. controle de camadas dos elementos;
- 3. zoom;
- 4. adição de elementos; 5. edição dos elementos;
- 6. logout do sistema.

Figura 1: Tela principal do protótipo do GIIRO

Na barra de ferramentas à direita, no centro (4), é possível adicionar sites (de instituições conectadas à rede), postes, caixas subterrâneas, reservas técnicas, caixas de emenda, cabos e anotações. Além disso, é possível medir distâncias no mapa.

Além disso, é possível cadastrar as emendas entre fibras em uma caixa de emenda, como mostra a Figura 2. Além de permitir a emenda de fibras entre dois cabos distintos, o sistema permite a ligação entre fibras de um mesmo cabo através de um jumper.

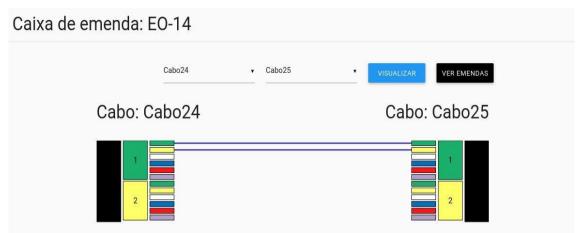


Figura 2: Tela de gerenciamento de emendas do protótipo do GIIRO

Ao fim da fase piloto, o sistema também deverá gerenciar o acesso de usuários com diferentes perfis, permitir o uso em dispositivos móveis e gerar relatórios para apoiar tarefas de gestão, reparo e expansão das redes.

1.2. Identificação do público alvo

O público-alvo consiste de todos os agentes envolvidos no planejamento, operação e manutenção de redes de fibra óptica, em especial a RNP e seus pontos de presença (PoPs). Parceiros das redes operadas pela RNP, como provedores de internet, instituições clientes e concessionárias, também poderão se beneficiar do uso do GIIRO a partir de uma visão limitada dos dados cadastrados.

2. Definição do piloto

2.1. Arquitetura do piloto

Visão geral. O GIIRO adota uma arquitetura cliente-servidor baseada nos padrões da web, usando o protocolo HTTP para comunicação e os formatos HTML e JSON para troca de dados. O lado cliente usa bibliotecas open source escritas em JavaScript, como o Leaflet para mapas, o D3.js para visualização de dados e o jQuery para operações diversas. O lado servidor segue uma arquitetura Model-View-Controller (MVC) baseada em tecnologias open source, como a linguagem Python, o framework web Flask e o banco de dados PostgreSQL com a extensão PostGIS para dados geográficos.

Detalhamento. A Figura 3 representa a arquitetura de implantação do sistema, utilizando o diagrama de implantação da UML. As principais unidades de implantação são o cliente, que acessa o sistema através de um navegador web, o servidor de banco de dados e o provedor de mapas.

GT-GIIRO: Arquitetura de implantação

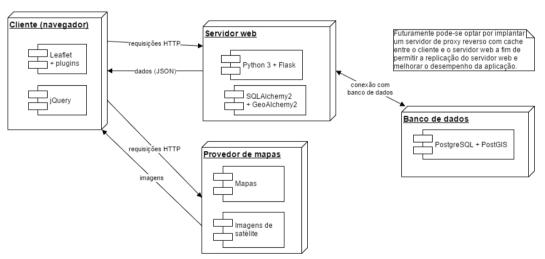


Figura 3: Arquitetura de implantação do GIIRO

O navegador se comunica com o servidor web através de requisições HTTP, passando dados no formato JSON. O servidor web envia uma resposta HTTP com arquivos estáticos, páginas web ou dados no formato JSON. A interpretação e o processamento das requisições HTTP pelo servidor web são feitos com o auxílio do framework Flask.

Eventualmente a aplicação web precisa acessar o servidor de banco de dados a fim de consultar ou alterar as informações armazenadas. No servidor web, essa interface é feita com a biblioteca SQLAlchemy2 para Python, juntamente com sua extensão GeoAlchemy2 que dá suporte a bancos de dados geográficos.

O banco de dados utilizado é o PostgreSQL, juntamente com a extensão PostGIS. O PostGIS adiciona tipos de dados espaciais e operações relacionadas, relevantes no tratamento de dados geográficos.

A fim de exibir mapas, o cliente usa a biblioteca Leaflet para Javascript. Essa biblioteca é usada por serviços como o Vialpê da RNP, o FourSquare e o Flickr, e em setembro de 2016 teve o lançamento da versão 1.0. O Leaflet foi escolhido por apresentar um bom desempenho em dispositivos móveis e pela comunidade ativa, que contribui com o projeto e com plugins. O GIIRO atualmente usa o plugin Leaflet.Draw, que permite a inserção e a edição de marcadores e linhas no mapa de forma similar a uma ferramenta de edição vetorial.

O Leaflet facilita a conexão com diversos provedores de mapas, que fornecem mapas cartográficos e fotos aéreas do planeta. No GIRO os mapas cartográficos são fornecidos pelo OpenStreetMap, um projeto colaborativo para criar um mapa editável gratuito do planeta, e as imagens aéreas são fornecidas pela Esri, uma companhia que provê dados e softwares de informação geográfica. O GIRO pode ser adaptado facilmente para utilizar outros provedores de mapas, como o Google e o Bing.

O desenvolvimento do GIIRO é centrado em duas linguagens de programação: Python, para o backend (servidor), e JavaScript, para o frontend (cliente). No desenvolvimento do backend em Python, é usado o gerenciador de pacotes pip para instalar as dependências. No desenvolvimento do frontend em JavaScript, é usado o gerenciador de pacotes npm, responsável por instalar as dependências, e o gerenciador de tarefas, gulp, para realizar o pré-processamento dos arquivos fonte JavaScript, que inclui juntar todos os arquivos em um só, de forma a melhorar o desempenho da carga da página.

Arquitetura de desenvolvimento. O código-fonte do sistema é mantido em um repositório Git gerenciado pelo sistema GitLab e está disponível em https://git.rnp.br/GT-GIIRO/giiro/. No mesmo endereço podem ser encontradas as tarefas do projeto, bem como uma wiki com as principais informações sobre o GIIRO.

A documentação para desenvolvedores encontra-se na pasta <code>doc/</code> do projeto. A documentação explica todos os passos necessários para implantar o sistema em um ambiente de desenvolvimento sob o sistema operacional GNU/Linux, em especial sob as distribuições Debian e Ubuntu.

Alternativamente pode-se usar o arquivo Dockerfile, localizado na raiz do projeto, para construir automaticamente um container Docker baseado na distribuição Ubuntu com a aplicação instalada e pronta para ser executada.

2.2. Instituições participantes

PoP-BA

Contatos: Claudete Alves, Luiz Barreto, Ibirisol Fontes, Ronaldo Almeida

Contribuições esperadas: consultoria sobre requisitos do gerenciamento da infraestrutura física de redes ópticas; execução do piloto do GIRO na rede do PoP-BA.

PoP-RN

Contatos: Kleydson Cunha, Edson Moreira

Contribuições esperadas: consultoria sobre requisitos do gerenciamento da infraestrutura física de redes ópticas; execução do piloto do GIRO na rede do PoP-RN.

GigaCandanga (Redecomep DF)

Contatos: Andre Drummond, Marcio Victorino, Leonardo Lazarte

Contribuições esperadas: definição de um modelo de dados para interoperabilidade de aplicações de gerenciamento de redes ópticas; definição e implementação de relatórios de gestão a partir desses dados.

RRM - Relacionamento de Redes Metropolitanas (contato possível)

Contatos: Cristiane Oliveira, Takashi Tome

Contribuições esperadas: visão gerencial macro da gestão das redes metropolitanas..

2.3. Objetivos e evoluções

Os seguintes aprimoramentos ao protótipo estão previstos para a fase piloto:

- Melhorias nos elementos contemplados parcialmente no protótipo, como dutos subterrâneos e caixas de emenda (splitters, jumpers), de forma a atender a diferentes requisitos de um amplo número de redes.
- Melhorias nos arquivos de automação de infraestrutura (Dockerfile), de forma a facilitar a implantação da aplicação.
- Importação e exportação de arquivos KML/KMZ (Google Earth), de forma a permitir o aproveitamento de informações já cadastradas.
- Implementação de versão mobile, de forma a permitir o uso da aplicação para consulta e cadastro de elementos da rede em campo.
- Gerenciamento de usuários e controle de acesso, de forma a permitir o uso da aplicação por usuários de diferentes perfis e regiões, permitindo, por exemplo, que a RNP utilize para supervisionar diferentes redes que sejam isoladas uma da outra para seus administradores locais..
- Visualização de relatórios gerenciais simples, como extensão da rede e número de elementos, de forma a apoiar o gerenciamento estratégico da rede.

3. Aproveitamento dos resultados do piloto

O piloto consiste do uso da ferramenta para cadastrar algumas das Redes Comunitárias de Ensino e Pesquisa (Redecomeps) mantidas pela RNP. Assim sendo, a RNP poderá usar o resultado do piloto diretamente para visualizar relatórios a partir das redes cadastradas. Além disso, as oportunidades de melhoria identificadas durante a execução do piloto serão incorporadas no produto final.

4. Macro cronograma de desenvolvimento do piloto

Macro atividades	1 . Trim. o	2 . Trim. o	3 . Trim. o	4 . Trim. o
Desenvolver melhorias no protótipo	X			

Aprimorar automação da infraestrutura	X	X		
3. Implementar importação e exportação de arquivos KML/KMZ	Х	Х		
4. Implementar versão mobile		Х		
5. Executar estudo piloto		Х	Х	
6. Apresentar resultados parciais		Х		
7. Implementar controle de acesso		Х	Х	
8. Implementar relatórios gerenciais				Х
9. Apresentar resultados finais				Х

5. Recursos para o desenvolvimento do piloto

5.1. Recursos oferecidos pela RNP para execução do piloto

A RNP oferece alguns ambientes que podem ser utilizados para o desenvolvimento e testes do piloto como:

- Recursos virtualizados em Pontos de Presença (PoPs) da RNP (http://www.rnp.br/institucional/pontos-presenca)
- Ambiente PlanetLab
 (http://www.rnp.br/pesquisa-e-desenvolvimento/redes-experimentacao)
- Ambiente de experimentação em Internet do Futuro, conhecido como FIBRE (
 Future Internet Research and Experimentation) e que está disponível em
 http://www.rnp.br/pesquisa-e-desenvolvimento/internet-futuro.
- Laboratório de Gestão de Identidade https://gidlab.rnp.br/

Estes e outros recursos disponíveis no ambiente de produção da RNP (http://www.rnp.br) e considerados necessários ao desenvolvimento do piloto, poderão ser listados nesta proposta na seção 5.2 Recursos para o projeto.

5.2. Recursos virtualizados para o desenvolvimento do piloto

Os seguintes recursos virtualizados são necessários ao desenvolvimento do piloto:

- GitLab (gerenciador de repositórios de controle de versão), para hospedar o código-fonte e a documentação do projeto. Disponível em https://git.rnp.br/
 Máquinas virtuais para hospedar a aplicação web. Disponível no PoP-BA.
- Considera-se também a possibilidade de usar o GldLab, disponível em https://gidlab.rnp.br/

Atualmente o desenvolvimento do sistema é realizado usando computadores que já estavam disponíveis no PoP-BA; no entanto alguns computadores mais antigos estão travando com frequência, atrapalhando o desenvolvimento. Assim, havendo recursos disponíveis, gostaríamos de contar com ao menos dois novos desktops com a configuração padrão da RNP: desktop s/ monitor (Core i7 – 8GB – 500GB).

6. Cronograma e entregas pré-definidas

Os relatórios de planejamento, relatórios técnicos, relatórios de acompanhamento e demais entregas listadas a seguir são pré-definidas e fazem parte integrante desta proposta e devem ser entregues pela equipe deste Grupo de Trabalho à Gerência de Grupos de Trabalho, conforme cronograma indicado nesta seção. Também deverão ser realizadas entregas referentes a documentação, participação em eventos presenciais (WRNP, Workshop de Disseminação do GT e Workshop de Apresentação de Resultados) entre outros que compõem o desenvolvimento do projeto.

Os modelos destes relatórios e demais entregas serão compartilhados com o coordenador do GT na ocasião da reunião de boas vindas em data a ser agendada com os projetos selecionados para fase 2.

6.1. Relatórios

Os relatórios são entregas do projeto (Relatórios de Planejamento – RP e Relatórios Técnicos), na articulação com os grupos de outras organizações envolvidos no mesmo tema. O acompanhamento dos resultados parciais é realizado a partir dos relatórios trimestrais de acompanhamento (Relatório de Acompanhamento – RA) e na apresentação e discussão do tema no Workshop RNP (WRNP) e na transferência de conhecimento feita à RNP.

As responsabilidades da coordenação do projeto por parte dos contratados englobam a gestão do projeto do GT, incluindo a utilização da Wiki da RNP para disponibilização de informações sobre ações, atividades e tarefas, assim como de indicadores de progresso e status.

Além disso, todo o código fonte deve ser mantido atualizado pela equipe de desenvolvimento diretamente no ambiente de desenvolvimento colaborativo a ser indicado e disponibilizado pela RNP. Os relatórios são agrupados em três tipos:

6.1.1. Relatórios de Planejamento (RPs)

RP4: Planejamento de Recursos Virtualizados

Estimativa de demanda, especificação detalhada de máquinas virtuais necessárias ao desenvolvimento e implantação do piloto, com as respectivas justificativas de dimensionamento.

RP5: Planejamento da estrutura de pacotes de trabalho de desenvolvimento tecnológico e do cronograma de entregas destes pacotes

Estrutura de pacotes de trabalho a serem realizadas ao longo do GT que descrevem os principais grupos de atividades que são necessários para desenvolvimento deste projeto. Um pacote de trabalho é um grupo de atividades que não deve durar mais do que 3 meses de execução. Cada pacote de trabalho deve ter uma data de entrega associada e o cronograma de marcos é a distribuição das datas de entrega de cada pacote de trabalho ao longo dos 12 meses de projeto.

RP6: Planejamento do Workshop RNP (WRNP)

Descrição da demonstração a ser realizada, equipamentos necessários, lista de integrantes do GT que irão participar, texto e demais documentos para divulgação no evento (O WRNP ocorrerá junto com o Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos - SBRC 2017, em Belém, Pará).

RP7: Relatório de planejamento do Workshop de Disseminação do GT

Descrição das atividades previstas para a reunião de encerramento do projeto piloto. Este workshop pode ser apenas com os usuários participantes do piloto ou reunindo outros usuários interessantes para disseminação do resultado do projeto. Ex.: apresentações sobre o projeto e das experiências dos usuários do piloto, tutorial ministrado durante o workshop, além de documentação, manuais e códigos-fonte a serem disponibilizados.

RP8: Relatório de planejamento para inclusão no portfólio da RNP

Definição de como será a inclusão do produto no portfólio da RNP, detalhando onde será disponibilizado o produto ou o código, onde é possível encontrar mais informações sobre o produto online (página do produto na RNP ou em site do próprio), como será disseminado (por exemplo: via um curso na grade da ESR ou via manuais de usuário e tutoriais abertos) e seu modelo de sustentabilidade.

6.2. Relatórios Técnicos (RTs)

Os relatórios técnicos devem refletir os resultados das atividades realizadas pelo GT para alcançar o seu objetivo de implantação de um piloto.

RT4: Mapeamento de componentes e licenças de software

Descrição detalhada de cada componente (novo ou de reuso) que compõem a arquitetura do piloto, bem como sua respectiva licença de software. O entregável deste relatório deverá ser uma página na wiki onde as licenças e componentes podem ser incrementados ao longo do projeto.

RT5: Plano de testes do piloto

Descrição detalhada dos testes a serem realizados para a avaliação do piloto, indicando os procedimentos, resultados esperados e cronograma.

RT6: Avaliação dos resultados do piloto

Descrição dos resultados obtidos nos testes descritos no RT4, contendo avaliação, relato dos problemas encontrados e das soluções implementadas.

RT7: Recomendações para a implantação

Descrição da proposta de implantação, identificando o público alvo; descrição e dimensionamento da infraestrutura necessária para a implantação dos resultados; arquitetura proposta; definição dos processos de monitoração e gerenciamento do serviço; estimativa e perfil dos recursos humanos para a gerência e operação dos resultados.

6.2.1. Relatórios de Acompanhamento (RA)

RA5 a RA9: Relatórios de acompanhamento

Relato do progresso das atividades que foram planejadas no período.

RWRNP: Relatório de participação no WRNP

Relato da experiência da participação no WRNP, como sugestões e considerações dos visitantes ao trabalho do GT.

6.3. Site de divulgação do Grupo de Trabalho

6.3.1. Atualização do site do GT

Deverá ser atualizado o site do GT com as informações relevantes do projeto na fase piloto, para disseminação do trabalho. O site do projeto deverá citar o apoio da RNP, com referência ao site da RNP. Deve-se disponibilizar o site do projeto também em inglês.

6.4. Participação no Workshop da RNP (WRNP)

6.4.1. Apresentação em sessão técnica e demonstração do protótipo

A discrição da RNP, deverá ser realizada uma apresentação e uma demonstração técnica da proposta do GT durante o Workshop da RNP (WRNP) nos dias 15 e 16/05 em Belém, PA, que acontece em conjunto com o Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC 2017).

6.5. Workshop de Disseminação do GT

6.5.1. Realização do Workshop de Disseminação do GT

O GT deve organizar um workshop para a disseminação dos resultados do GT para potenciais interessados em absorver os produtos/serviços desenvolvidos durante o piloto, focando nos aspectos técnicos explorados durante o piloto e nos diferentes casos de uso da solução desenvolvida.

6.6. Entrega dos produtos desenvolvidos durante o piloto

6.6.1. Piloto desenvolvido

Fontes, executáveis, scripts, arquivos de configuração etc.

6.6.2. Documentação do piloto

Documentação técnica, manuais de instalação, manuais do usuário etc.

6.7. Avaliação do piloto

6.7.1. Apresentação dos resultados do GT

Deverá ser realizada uma apresentação para um comitê de avaliação dos GTs, com ênfase no piloto desenvolvido e no produto/serviço a ser disponibilizado para os usuários da RNP. A partir dessa avaliação, serão selecionados os GTs que poderão ser recomendados para possível modelagem de serviço/produto para oferta da RNP.

Cronograma de entregas pré-definidas 27/01/2017

- RP4: Planejamento de Recursos Virtualizados
- RP5: Planejamento da estrutura de pacotes de trabalho de desenvolvimento tecnológico e do cronograma de entregas destes pacotes 24/02/2017
 - RT4: Relatório de mapeamento de componentes e licenças de software
 - RT5: Plano de testes do piloto

31/03/2017

- Site do GT atualizado
- Iniciar a implantação do piloto¹
- RP6: Relatório de planejamento do WRNP (demonstração, material e viagens)
- RA5: Relatório de acompanhamento trimestral jan/fev/mar 28/04/2017
- Entrega do código-fonte da versão implantada no piloto (códigos-fonte, executáveis, scripts, arquivos de configuração etc.), incluindo o sistema e as ferramentas de suporte à operação;
- Entrega de documentação (manuais de instalação e administração, manuais de usuário etc.).

15/05/2017 a 16/05/2017

- WRNP: Apresentação em sessão técnica e demonstração dos resultados parciais do piloto no Workshop RNP nos dias 15 e 16/05 em Belém, PA. 30/06/2017
 - RWRNP: Relatório de participação no WRNP
 - RA6: Relatório de acompanhamento trimestral abr/mai/jun 28/07/2017
 - RP7: Relatório de planejamento do Workshop de Disseminação do GT

25/08/2017

- RT6: Avaliação dos Resultados do Piloto
- RT7: Recomendações para a implantação do serviço/produto

Entre 01/09/2017 a 30/09/2017 (data a definir)

• Realização do Workshop de Disseminação do GT (data a definir)

Entre 01/10/2017 a 31/10/2017 (data a definir)

- Apresentação Final dos Resultados para o comitê de avaliação
- RA7: Relatório de acompanhamento trimestral ago/set/out 24/11/2017
- RP8: Relatório de planejamento para inclusão no portfólio da RNP
- Atualização do RT4: Relatório de mapeamento de componentes e licenças de software
- Entrega final do código-fonte e documentação 15/12/2017
- RA8: Relatório de acompanhamento out/nov/dez

_

¹ Início das atividades planejadas no RP6.